Rings which have projective coflat module

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rings for which every simple module is almost injective

We introduce the class of “right almost V-rings” which is properly between the classes of right V-rings and right good rings. A ring R is called a right almost V-ring if every simple R-module is almost injective. It is proved that R is a right almost V-ring if and only if for every R-module M, any complement of every simple submodule of M is a direct summand. Moreover, R is a right almost V-rin...

متن کامل

rings for which every simple module is almost injective

we introduce the class of “right almost v-rings” which is properly between the classes of right v-rings and right good rings. a ring r is called a right almost v-ring if every simple r-module is almost injective. it is proved that r is a right almost v-ring if and only if for every r-module m, any complement of every simple submodule of m is a direct summand. moreover, r is a right almost v-rin...

متن کامل

Projective Representations I. Projective lines over rings

We discuss representations of the projective line over a ring R with 1 in a projective space over some (not necessarily commutative) field K. Such a representation is based upon a (K,R)-bimodule U . The points of the projective line over R are represented by certain subspaces of the projective space P(K,U ×U) that are isomorphic to one of their complements. In particular, distant points go over...

متن کامل

Fuzzy projective modules and tensor products in fuzzy module categories

Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...

متن کامل

Commutative rings in which every finitely generated ideal is quasi-projective

This paper studies the multiplicative ideal structure of commutative rings in which every finitely generated ideal is quasi-projective. Section 2 provides some preliminaries on quasi-projective modules over commutative rings. Section 3 investigates the correlation with well-known Prüfer conditions; namely, we prove that this class of rings stands strictly between the two classes of arithmetical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 1992

ISSN: 0011-4642,1572-9141

DOI: 10.21136/cmj.1992.128346